Parameter Estimation of DC Motor using Adaptive Transfer Function Based on Nelder-Mead Optimisation
نویسندگان
چکیده
منابع مشابه
Parameter Estimation of DC Motor using Adaptive Transfer Function based on Nelder-Mead Optimisation
Received Sep 21, 2017 Revised Dec 30, 2017 Accepted Jan 17, 2018 This paper explains an adaptive method for estimation of unknown parameters of transfer function model of any system for finding the parameters. The transfer function of the model with unknown model parameters is considered as the adaptive model whose values are adapted with the experimental data. The minimization of error between...
متن کاملParameter Estimation of Nonlinear Muskingum Models Using Nelder-Mead Simplex Algorithm
The linear form of the Muskingum model has been widely applied to river flood routing. However, a nonlinear relationship between weighted-flow and storage volume exists in most rivers, making the use of the linear Muskingum model inappropriate. On the other hand, the application of the nonlinear Muskingum model suffers from hydrologic parameters estimation. The current study aims at presenting ...
متن کاملGrid Restrained Nelder-Mead Algorithm
Probably the most popular algorithm for unconstrained minimization for problems of moderate dimension is the Nelder-Mead algorithm published in 1965. Despite its age only limited convergence results exist. Several counterexamples can be found in the literature for which the algorithm performs badly or even fails. A convergent variant derived from the original Nelder-Mead algorithm is presented....
متن کاملImplementing the Nelder-Mead simplex algorithm with adaptive parameters
In this paper, we first prove that the expansion and contraction steps of the Nelder-Mead simplex algorithm possess a descent property when the objective function is uniformly convex. This property provides some new insights on why the standard Nelder-Mead algorithm becomes inefficient in high dimensions. We then propose an implementation of the Nelder-Mead method in which the expansion, contra...
متن کاملStatistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indonesian Journal of Electrical Engineering and Computer Science
سال: 2018
ISSN: 2502-4760,2502-4752
DOI: 10.11591/ijeecs.v9.i3.pp696-702